
NAS Grid Benchmarks Version 1.0

Rob F. Van der Wijngaart*, Michael Frumkin

NASA Advanced Supercomputing (NAS) Division

NASA Ames Research Center, Moffett Field, CA 94035-1000

wijngaar@nas, nasa. gov, frumkin©nas, nasa. gov

Abstract

We provide a paper-and-pencil specification of a benchmark suite for

computational grids. It is based on the NAS Parallel Benchmarks (NPB)

and is called the NAS Grid Benchmarks (NGB). NGB problems are pre-

sented as data flow graphs encapsulating an instance of a slightly modified

NPB task in each graph node, which communicates with other nodes by

sending/receiving initialization data. Like NPB, NGB specifies several

different classes (problem sizes). In this report we describe classes S, W,

and A, and provide verification values for each. The implementor has the

freedom to choose any language, grid environment, security model, fault

tolerance/error correction mechanism, etc., as long as the resulting imple-

mentation passes the verification test and reports the turnaround time of

the benchmark.

1 Introduction

The NAS Parallel Benchmarks (NPB) were designed to provide an objective

measure of the capabilities of hardware and software systems to solve compu-

tationally intensive computational fluid dynamics problems relevant to NASA.

They are considered representative of an important segment of high perfor-

mance scientific computing. At the time of NPB's inception in 1991 there were

no accepted standards for programming parallel computers, and there was great

diversity in hardware systems. It was deemed that any specific benchmark im-

plementation would be unfairly biased towards a certain system configuration or

programming paradigm. Hence, the first version of NPB, referred to as NPB1

[1], consisted of a paper-and-pencil specification, with virtually all aspects of the

implementation left to the implementor. A reference implementation, mostly

in Fortran, was provided for convenience, but no claims were made about algo-

rithmic efficiency or appropriateness for any particular system.

Despite its apparent lack of concreteness, NPB1 was embraced by vendors

and researchers. It served as a fruitful testing ground for programming tools and

"Employee of Computer SciencesCorporation

compiler optimizations. Once a certain convergence in programming paradigms

was reached, MPI (Message Passing Interface) being the first generally accepted

standard, NAS created the source code implementation NPB2 [2], which became

the de facto yardstick for testing (parallelizing) compilers and tools.

Computational grids [5, 8] are currently in a state of development comparable
to that of high performance computers at the end of the 1980s. Several prototype

grid tool kits exist (e.g. Globus [6], Legion [10], CORBA [3], Sun Grid Engine [91,

Condor [7]), whose relative merits are not well understood. Here we describe a

new benchmark suite, the NAS Grid Benchmarks (NGB), which aims to provide

an exploration tool for grids, similar to that which NPB provided for high-

performance computing systems. Among others, NGB addresses one of the most

salient features of grid computing, namely the ability to execute distributed,

communicating processes.
The pencil-and-paper specification provided here serves as a uniform tool for

testing functionality and efficiency of grid environments. Users are free to imple-

ment NGB as they see fit, provided they Observe the same---fairly loose--rules

laid down in the NPB1 [1] report. Specifically, NGB does not specify how to im-

plement/select the following: authentication, security, fault tolerance, schedul-

ing, grid environment, mapping of NGB tasks onto the computational grid. An

NGB result consists of a correctly reproduced set of verification values, plus the

turnaround time. Other metrics, such as aggregate resources (disk space, CPU

time, memory, network bandwidth) used to complete the benchmarks, are cur-
rently considered too poorly defined to have utility outside the benchmarker's

own organization. An NGB implementor may provide a more detailed report

on the performance of grid components, including time to communicate data

between any two benchmark tasks executed on (potentially different) platforms,

and wall clock time for each task. But since NGB does not specify how many

or which resources to employ, the detailed report is considered informative in

nature. More information about the NGB motivation, requirements, and design

is provided in [4].

2 NGB design

Like NPB, NGB is made available in several different problem sizes, traditionally

called classes. An NGB problem of a particular class is specified by a data flow

graph encapsulating NGB tasks (NPB problems) and communications between

these tasks. Each graph contains a Report node (see Section 3) that collects
verification statuses to determine correctness of the computational result. The

decision to use NPB problems, specifically BT, SP, LU, MG, and FT, in the
definition of NGB is motivated as follows.

• Good specifications and implementations of NPB problems already exist.

Freely downloadable versions can be found at

http ://www.nas. nasa. gov/Research/Software/swdescript ion. html

• NPB is well-studied, well-understood, and widely accepted as a scientific

benchmarksuite.

• Solidverificationproceduresfor NPBproblemsalreadyexist.

• NPBproblemsrequirenointeractionandnodatafilestostart,inprinciple
(butseenextitem).

NPBproblemsproducesizeablearraysrepresentingsolutionsondiscretiza-
tionmeshes.Thesecanbeusedasinputfor anyof theotherNPBprob-
lems,sinceeachisbasedonstructureddiscretizationmeshescoveringthe
samephysicaldomain.Hence,it is fairlystraightforwardtoconstructsim-
plebutplausibledependencygraphsrepresentingsetsofinterrelatedtasks
onthegrid,withsignificantdataflows(solutionarrays)betweenthem.

• Thegranularityof thebenchmarkcaneasilybecontrolledbyvaryingthe
numberofiterationscarriedout byeachNPBtask.

NPBproblemsembodyoperationsthat cansensiblysymbolizescientific
computation(flowsolvers:SP,BT, LU),post-processing(datasmoother:
MG),andvisualization(spectralanalysis:FT).Weconsidercollectionsof
suchtaskssuitablecandidatesforgridcomputing.

Well-implementedportable,parallelversionsof all NPBproblemsexist,
whichenablesbalancingtheloadof complicatedgridtasksby assigning
differentamountsof computationalresourcesto differentsubtasks.

In orderto facilitateimplementationofNGB,werequireonlysmallchanges
to bemadeto the NPB buildingblocks.A descriptionof thesechangesis
providedin thisreport.Wheneverinterpolationisrequiredto transferinforma-
tion froma certainmeshsizein oneNPBproblemto a differentmeshsizefor
anotherNPBproblemwithin thesameNGBinstance,weprescribetri-linear
(Lagrangian)interpolation,asdefinedin Section3.2.

3 NGB Data Flow Graphs

An instance of NGB comprises a collection of slightly modified NPB problems,

each defined on a fixed, rectilinear discretization mesh. Each NPB problem

(BT, SP, LU, MG, or FT) is specified by class (mesh size, number of iterations),

source(s) of input data, and consumer(s) of solution values. Hence, an instance

of NGB is specified by a Data Flow Graph (DFG), see Figures 1-4. The DFG

consists of nodes connected by directed arcs. It is constructed such that there

is a directed path from any node to the sink node of the graph (indicated by

Report). This is necessary to ensure that any failing node will be detected.

3.1 Corrections to NPB

It has been observed by a number of researchers that the officially released

implementation of NPB and the paper-and-pencil specification contain some

inaccuraciesandminorerrors. Welist thesefor reference,but only correct
those(items3and4below)that causeproblemswhenimplementingNGB.

1. ThenumericalschemeusedinMGdoesnotqualifyasamultigridmethod;
true multigridderivesits efficiencyfromthefact that meshpointsat
coarserlevelsof refinementarecontainedin all finergrids.Thiscanbe
assuredif thenumberof meshcellsdoublesin eachcoordinatedirection
witheveryrefinement.However,inNPB'sMGthenumberofmeshpoints

doubles with every refinement.

2. The MPI implementation of MG formally exhibits a race condition in the
initialization.

3. The MPI implementation of FT does not scale the reverse Discrete Fourier

Transform with the size of the mesh as it should according to [1]. This
causes the norm of the solution field after each invocation of FT within

3
NGB to jump by a factor of _=1 ni, where n_ is the number of mesh

points in coordinate direction i. Especially for the larger problem sizes
the jump becomes too large, so we always divide the NPB FT result by

3
l_i=l n_ before transferring the (real part of) the solution to a successor
DFG node, but after computing checksums in case the node performs a
verification test.

4. Initialization of the flow field in SP, BT, and LU is supposed to employ
transfinite interpolation of the exact solution on the boundaries of the

discretization mesh. However, in neither the NPB specification [1] nor its
MPI implementation does the initialization correspond to any reasonable

interpolation. The initialization does not even reproduce a constant flow

field if all boundary values are identical. This did not lead to problems

within NPB, but NGB breaks down when BT is followed by SP, as hap-

pens in HC. The reason is that the discontinuity between boundary values

and initial interior solution causes BT to generate oscillations in the com-

puted solution near the mesh boundary. This results in attempts by SP to

compute the square root of a negative number when evaluating the local
speed of sound, which causes the program to fail. We remedy this by

employing tri-linear interpolation (see Section 3.2 below) to compute the

initial flow field for SP, BT, and LU whenever they are immediate succes-

sors of the Launch node. In this process only the values of the dependent

variables at the eight corners of the cubical grid are used. True transfinite

interpolation, a refinement of tri-linear interpolation, creates too smooth

an initial solution, which causes premature convergence.

3.2 Filtering mesh data

All mesh-based NPB problems are defined on the three-dimensional unit cube.

However, even within the same problem class (S, W, or A) there are different
mesh sizes for the different benchmark tasks. Discretization points of meshes of

differentsizegenerallydonotcoincide.In orderto usetheoutputfromoneNPB
taskasinputfor another,weinterpolatethedatatri-linearly,andsubsequently
takearithmeticaveragesof multipleinputs.Theseoperationsarecarriedout
by thenodesin theDFGlabeled"MF" (MeshFilter). Themethodsusedby
NPBpreservenumericalstabilityunderthesefilteroperations.Letavariableu
be defined at the grid points of a mesh of extent (1 :nxz, 1 :nyz, 1 :nzz), and let

v be the interpolant of the same variable at the grid points of a mesh of extent

(1 :nz_, 1 :ny2, 1 : nz2). The value of v at point (i, j, k) is calculated as follows.

v(i,j,k)= 3` [_ (au(ih,jh, kh)+(1--a)u(il,jh,kh))+

(1 -- _q)(au(ih, jl, kh) +(1 -- a)u(il, jZ, kh))]
+

(1--3')[Z (au(ih,jh, kt)+(1--a)u(il,jh,kl))+

(1 -- _) (au(ih, jl, kt) +(1 - _)u(iz, it, kt))]

(1)

where

dx = 1/(nx2 - 1)

x = (i - 1)dx(nxl - 1)

ih = min(Lx + 2J,nxl)

it = ih -- 1

c_-= x- it

dy = 1/(_y: - 1)
y = (j - 1)dy(ny_ - 1)
jh = min(Ly + 2J, nyl)
jl = jh -- 1

= y -j_

dz = 1/(nz2 - 1)
z = (k- 1)dz(nzl - 1)

kh = min(Lz + 2j,nzl)

kt = kh - 1

3"= z- kt

(2)

If u and v are vector fields the interpolation is performed in a componentwise
fashion.

3.3 DFG Node

Each node (except Launch and Report) represents a single computational task,
which consists either of filtering or of executing one of the NPB tasks. It has a set

of input and output arcs, and a compute module. If a node is connected to the

source node (indicated by Launch in Figures 1-4), it receives control directives

to initiate the computation. Otherwise it receives input data from other nodes

through its input arc(s), to be used to calculate or set initial conditions. If
the node is not connected to the sink node (indicated by Report in Figures 1-

4), it sends the computed solution along all output arcs. The implementor is
free to attach to a node any additional attributes, such as information on the

computational resources required for performing its functions, which can be

used by a scheduler. The sink node collects verification statuses of any nodes
connected to it.

3.4 DFG Arc

An arc connects tail and head nodes and represents transmission of data from

the tail to the head. The implementor is free to attach to the arc any additional

attributes, such as information on the communication volume and frequency,

whichcanbeusedby ascheduler.Datato beexchangedbetweenDFGnodes
maynotbeprecomputedorcached,butmustbecreatedanewfor eachbench-
markrun. Dashedarcsin Figures1-4connectthenodesLaunch and Report

to the rest of the graph. They carry no computational data, but are required

for control and timing. NGB does not prescribe the mechanism for transferring

data, nor does it prescribe the representation of data to be exhanged between

DFG nodes. This has some implications for the verification tests performed by

the nodes connected to the Report node, as descibed below.

3.5 Four NGB Problems

NGB consists of families of problems named Embarrassingly Distributed (ED),

Helical Chain (HC), Visualization Pipeline (VP), and Mixed Bag (MB). They

are described in detail in the following subsections. Whenever two NPB tasks

in the DFG exchange solution data (an array), with or without a mesh filter

operation in between, the type of array to be transferred is determined by the

receiving task, except in the case of FT (see below). Specifically, when SP, BT,

and LU communicate with each other, they exchange the solution on the entire

mesh, consisting of five double precision words per mesh point. When SP, BT,
or LU send data to an MG node-which operates on data that consists of a single

double precision word per mesh point-they compute and send the local speed

of sound a for each mesh point. The solution at a point is defined by the vector

u, with five components (see [1]). The speed of sound is defined by:

o: (3)

When MG sends data to an FT node, it transfers the solution on the entire

mesh (a single double precision word per point), except the solution values on

the periodic boundaries. When FT sends data to an FT node, only the real part

of the complex solution value on the entire mesh is transferred. See Table 1,

which lists the types of data exchanged between NPB tasks within NGB. Some

of the DFG arc tail/head combinations listed in the table only occur for NGB

sizes larger than A, to be specified in a later report.

Table 1: Types of field data (double precision real) exchanged by NPB tasks
Arc head

BT SP LU MG FT
BT 5-vector 5-vector 5-vector scalar

SP 5-vector - 5-vector -

Arc LU 5-vector - - scalar -

tail MG scalar

FT real part of

complex scalar

Scaleup ofNGB problems from classS tolargerproblem sizesisaccomplished

by increasingthe number ofgraph nodes, as describedbelow, as wellas the size

of the NPB problem in each node. Specifically,for NGB classX we employ

NPB problems ofclassX exclusivelyas well.

Other than ED, each NGB problem involves transferof solution values

between DFG nodes. This isa potential source of numerical error,because

nodes may execute on differentarchitectures,with differentdata representa-

tions and/or arithmetic. The originalNPB verificationtestsare fairlytight,

to avoid the possibilityof validatingan erroneous solution. Since NGB uses

the same rather stricterror tolerances,itispossiblethat correctlycomputed

solutions failthe verification test. Specifically, if error norms of the final NGB

solution(s) have a small absolute magnitude, the build-up of errors due to dif-

fering arithmetic or to data conversions may exceed the verification threshold.

For example, if the magnitude of an actual error norm is 10 -7 and data conver-
sion causes differences in the last bit of a double precision number with a 48-bit

mantissa, an error tolerance of 10 -7 may cause a correctly computed solution to

fail the verification test. To avoid this problem, which manifests itself for class

S of the NGB, we cut the size of the time step of SP, BT, and LU for that class

in half (except for ED, which does not suffer from data conversions because no

communication takes place). This slows down convergence sufficiently that final
error norms are well above the threshold value for triggering false verification

failures.

3.5.1 Embarrassingly Distributed (ED)

ED represents the important class of grid applications called parameter stud-

ies, which constitute multiple independent runs of the same program, but with

different input parameters.

We select SP, the core of an important class of flow solvers, as the basis for
this benchmark. There is no communication between any of the instantiations

of SP, as indicated in Figure 1 depicting class S (sample size) of the benchmark.

If we number the nodes of the ED graph consecutively, starting from zero, then

the parameter study is defined by varying the initialization constant C1,1, as

defined in [1], as follows: 61,1 = 2(1 + i * 0.01), where i is the node number.
Note that the initialization of the flow field in the interior of the mesh takes

place through tri-linear interpolation of the flow variables at the eight corner

points of the mesh, see Section 3.1. No other changes are made to the NPB

problem defining SP.

3.5.2 Helical Chain (HC)

HC represents long chains of repeating processes, such as a set of flow compu-
tations that are executed one after the other, as is customary when breaking

up long running simulations into series of tasks. We select BT, SP, and LU to

make up the successive nodes in the chain, and connect this triplet into a linear

chain, as shown in Figure 2. Initialization of the computation takes place in

EmbarrassinglyDistributed(ED)

[Launch ,, l

i i i

4

[Report J

Figure 1: Data flow graph of NGB

problem ED, class S (sample size).

Dashed arrows signify control flow.

Helical Chain (HC)

Figure 2: Data flow graph of NGB

problem HC, class S (sample size).

Solid arrows signify data and control

flow. Dashed arrows signify control
flow only.

the regular NPB style for the first BT node in the graph (but see Section 3.1

for the correction we need to apply). Subsequent nodes use the final computed
solution of their predecessor node to initialize. For problem classes S and A no

interpolation is required, because the mesh sizes for SP, BT, and LU are iden-

tical. However, for class W they differ, so in general interpolation is required,

as indicated by the MF nodes in the graph.

3.5.3 Visualization Pipeline (VP)

VP represents chains of compound processes, like those encountered when visu-

alizing flow solutions as the simulation progresses. It comprises the three NPB

problems BT, MG, and FT, which fulfill the role of flow solver, post processor,

and visualization module, respectively. This triplet is linked together into a

logically pipelined process, where subsequent flow solutions can be computed

while postprocessing and visualization of previous solutions is still in progress.
This process is illustrated in Figure 3.

Data exchange between NPB nodes in VP is as follows. Each BT node

transfers its entire solution to its BT successor node in the pipeline, with no

interpolation necessary. Initialization of the computation takes place in the

regular NPB style for the first BT node in the graph (but see Section 3.1 for

the correction we need to apply). Each BT node also produces the scalar field
of sound speeds, consisting of one double precision number for each point in the

BT mesh. This solution is used to initialize the MG successor node, but only

in the interior of the mesh. Hence, the BT sound speed field is interpolated (by
the MF nodes in the graph) onto the interior of the MG mesh. This interior,

VisualizationPipe(VP)

Figure3: Data flow graphof
NGBproblemVP,classS (sam-
ple size). Solidarrowssignify
dataandcontrolflow.Dashedar-
rowssignifycontrolflowonly.

MixedBag(MB)

Figure4: DataflowgraphofNGBprob-
lemMB, classS (samplesize). Solid
arrowssignifydata and controlflow.
Dashedarrowssignifycontrolflowonly.
Subscriptsindicatedifferent(relative)
numbersofiterations.

whichis discretizedby a meshwhosenumbersof pointsareexactpowersof
twoineachcoordinatedirection,coverstheunit cube,andthuscoincideswith
theBT meshin physicalspace.Theboundaryvaluesfor MGaresetbyusing
explicitperiodicboundaryconditionsonall six facesof thecubicmesh,which
meanscopyingfunctionvaluesat discretizationpointsonecellawayfromthe
meshboundarytothecorrespondingboundarylocationontheothersideofthe
mesh(thiscopyingprocessis identicalto thatin theoriginalNPBMGproblem
within eachiteration). Similarly,uponcompletionMG transfersthe interior
valuesof its computedsolutionto theFT nodevia the MF node. However,
foreachFT nodeotherthanthefirst in thevisualizationpipelinethereisalso
anFT solutionthat isusedto initializethesuccessorFT node.Asmentioned
abovein thedescriptionof theNGBgraphset,FT usesforits initializationan
arrayofdoubleprecisionrealvalues,consistingof thearithmeticaverageof the
realpartof thepreviousFT solution(if present)andtheinteriorsolutionof
theMGnode,bothinterpolatedontothewholeFT mesh.Thescalardouble
precisioncomplexinitial fieldofFT is createdout of therealpart asfollows.
Formeshpoint(i, j, k) of the FT mesh (the origin of the mesh is point (1, 1, 1))

the imaginary part of the initial solution ul is:

Irn(ut) = (((i + j + k) mod 3) - 1) *Re(u1). (4)

The reason FT nodes communicate with each other is that it must be possible

9

to detectwhethereachnodehasfinishedcomputationssuccessfully.

3.5.4 Mixed Bag (MB)

MBissimilarto VP.It againinvolvesthesequenceofflowcomputation,post-
processing,andvisualization,but nowtheemphasisis onintroducingasym-
metry.Differentamountsof dataaretransferredbetweendifferenttasks,and
sometasksrequiremoreworkthanothers,makingit hardfor agridscheduler
to mapDFGtasksto grid resourcesefficiently.TheMB DFGspecifiesthat
severalflowcomputationscanstartsimultaneously(thefirst horizontallayer),
butthenextlayerimpliessomesynchronizationwhencomputedsolutionsfrom
multipleinstantiationsofLUareusedas--interpolated,averaged--inputforthe
MGnodes,seeFigure4. Thesamecommunication/synchronizationpatternis
usedfortransferofdatabetweenMGandFT nodes.Asin thecaseof VP,the
interioroftheMGmeshis initializedwiththesoundspeedfieldfromtheentire
LUmesh,andMGalsotransfers--interpolated,averaged--solutionvalueson
theinteriorof its meshto theentiremeshof FT successornodes.Also,asin
thecaseof VP,thedoubleprecisioncomplexinitial fieldof FT isconstructed
fromdoubleprecisionrealdatausingEquation4. Anadditionalcomplexityof
MB isthat nodesin differentcolumnsoftheDFGperformdifferent(relative)
numbersof timesteps/iterations,indicatedby thesubscriptsk, l, and rn in

Figure 4. This creates a potential for load imbalance that must be handled by

allocating different amounts of resources to computational nodes in the same

layer of the graph. The mechanism for determining the relative number of time

steps for the graph nodes is as follows. Let the number of iterations for a node

in the leftmost column in graph layer d be N °, which is determined by dividing
the number of iterations of the original NPB by the depth of the DFG, with

a minimum of one, as described in Section 3.6. Also, let the column index of

a graph node be c, starting with zero for the leftmost column, and increasing
with unit steps when moving to the right 1. Then the number of iterations for

any node is defined by N_ = max(l, [N°(1 - _-_)J). For class S the numbers

of iterations executed by LU nodes of increasing column index are 16, 12, and

10, by MG nodes 1, 1, and 1, and by FT nodes 2, 1, and 1, respectively. Initial-

ization of the computations in the first graph layer is the same as in the regular
NPB (but see Section 3.1 for the correction we need to apply).

3.6 Scaling Rationale and Verification

The purpose of NGB is to gauge the capabilities of computational grids. It is

expected that as time progresses, such grids will become more powerful both
in terms of single system performance, as well as in terms of the number of

accessible systems. The creation of larger NGB problem sizes (classes) is meant

1For class S the MF node preceding the FT node with column index zero has two input
arcs, that with column index one has three input arcs, and that with column index two has
one input arc.

10

to capturethisexpecteddevelopment.Hence,successiveNGBclasseswill in-
volvemorecomputationalwork,aswellasmoregraphnodes,in general.The
rationaleforselectingtheparametersthat determinetheseisasfollows.

TheNPBclassesalreadycapturegrowthin problemsize.NGBmakesuse
of thisbyemployingfor eachclassa dataset(gridor array)of thesamesize
asthecorrespondingNPBclass.Furthermore,weacceptthepremisethat an
NGBinstanceofacertainclassshouldrunapproximatelyaslongasaninstance
of NPBof thesameclassif wedisregardcommunicationtimesbetweengraph
nodes,interpolationandaveragingofinputdata,andexploitationofintra-node
parallelism.In otherwords,weassociatewith eachgraphnodecontainingan
NPBproblema weightequalto theamountof computationalwork,andmake
surethat the criticalpathhasapproximatelythe sameaggregateweightas
_anNPBinstanceof that class.OtherthanED, eachNGBproblemwill have
severaldifferentNPBproblemson its criticalpath. Thegoalof keepingthe
summedweightsofthenodesonthecriticalpaththesameasthat of a single
NPBproblemmaybereachedbysettingthenumberofiterationsor timesteps
withineachNGB NPBproblemequalto that of the originalNPBproblem,
dividedby thenumberof nodeson the criticalpath, roundeddown,with a
minimumof one.Consequently,thecomputationalworkon theNGBcritical
pathwill benomorethanthat of the mostcomputationallyintensiveNPB
problemofthesameclass.

Note:wedefinethe width of each NGB DFG as the maximum number of

NPB nodes in the DFG that can be executed concurrently, and the depth as

the length of the critical path of such nodes, ignoring the pipeline fill or drain

nodes in VP. Using these definitions, the total size of each NGB DFG, not

including the Report, Launch, and filter nodes, is the product of depth and
width. For convenience we use the depth instead of critical path length for

scaling the number of iterations or time steps within the DFGs. DFG width

has no influence on turnaround time--save pipeline fill/drain time---if the NGB

implementor fully exploits inter-node parallelism.

If we map consecutive classes S, W, A, ..., to consecutive integers, starting

with one, we specify the depth D of NGB class i as follows.

DiED = 1, D_C = 9 ma_x(1, i - 2), Divp = 3 max(l, i - 2), D_B = max(3, i).

The corresponding width W is defined as follows.

_'ED ----9 * 2max(0'i-3), W_t C = 1, Wbp : 3, W_B = max(3, i).
We list the numerical values of the total numbers of nodes for benchmark

classes S, W, and A through E, respectively, in Table 2. While it is clear which

NPB problems to select for the different graph layers of ED, HC, and VP, it

is not obvious for MB. We adopt the following strategy. The last graph layer

(connected to the Report node) is assumed to have depth zero. Depth increases

by one for each higher layer. Layers at depths 0 and 1 always employ FT and

MG, respectively. Layers at larger depth are assigned NPB problems LU, BT,

and SP, respectively, in a cyclical fashion.

Verification values for NGB classes S, W, and A are presented in the Ap-

pendix. For ED these values are required for each node in the graph, for HC

and VP only for the last node, and for MB for all nodes in the last layer of

11

Table2:Width x depthofNGBgraphs

Class
Name S W A B C D E
ED
HC
VP
MB

9x 1 9x 1 9xl 18xl 36xl 72xl 144×1

lx9 lx9 lx9 lx18 lx27 lx36 lx45

3x3 3x3 3x3 3x6 3×9 3x12 3×15

3x3 3x3 3x3 4x4 5x5 6x6 7x7

the graph. Verification procedures for ED and HC are the same as those for

the original NPB, although the actual values differ, of course. For VP and MB

verification values and procedures must be defined for FT nodes, since these

are connected to the report node. In the original NPB each step in the reverse

FFT computes a double precision complex checksum and compares it with a

verification value. The reason for this is that the reverse FFT steps are inde-

pendent, and verifying only the last is not sufficient. In NGB the number of

verification values is potentially significantly larger than in NPB. To keep the

number within reason, we verify not every reverse FFT step individually, but
compute the arithmetic average of the checksums over all the reverse FFT steps

within each FT task and compare that to a verification value.

4 Summary and Future Work

We have described the composition and details of a suite of four families of grid
benchmark problems called NAS Grid Benchmarks (NGB), based on the NAS

Parallel Benchmarks (NPB). Only classes S, W, and A, based on NPB classes S,

W, and A, are specified. We provide verification values for these classes, so that

correctness of the computed solutions can be determined. Verification values

for larger classes will be presented in a future report.

12

References

[1]

[2]

D. Bailey, E. Barscz, J. Barton, D. Browning. R. Carter, L. Dagum, R.

Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Si-

mon, V. Venkatakrishnan, S. Weeratunga. The NAS Parallel Benchmarks.

NAS Technical Report RNR-94-007, NASA Ames Research Center, Moffett

Field, CA, 1994.

D.H. Bailey, T. Harris, W.C. Saphir, R.F. Van der Wijngaart, A.C. Woo, M.

Yarrow. The NAS Parallel Benchmarks 2.0. NAS Technical Report NAS-

95-020, NASA Ames Research Center, Moffett Field, CA, 1995.

[3] R. Ben-Naten. CORBA: A Guide to Common Object Request Broker Ar-
chitecture. McGraw-Hill, New York, 1995.

[4]

[5]

M. Frumkin, R.F. Van der Wijngaart, NAS Grid Benchmarks: A Tool
for Grid Space Exploration, Proc. 10 th Int'l Symp. High Performance and

Distributed Computing conference, San Francisco, August 2001.

The Grid. Blueprint /or a New Computing Infrastructure. I. Foster, C.

Kesselman, Eds., Morgan Kaufmann Publishers Inc., San Francisco, CA,
1999.

[6]

[71

[sl

[9]

[10]

[11]

I. Foster, C. Kesselman. Globus: A Metacomputing Infrastructure

Toolkit. Int. J. Supercomputer Applications, 11(2):115-128, 1997,

http://www.globus.org.

M. Livny, J. Basney, R. Raman, T. Tannenbaum. Mechanisms for

High Throughput Computing. SPEEDUP Journal, Vol. 11(1), 1997,

http://www.cs.wisc.edu/condor/.

NASA Information Power Grid. http://www.nas.nasa.gov/IPG.

Codine 5.2 Manual, Revision A. Sun Microsystems, Inc., Palo Alto, CA,

September 2000, http://www.sun.com/gridware.

Legion 1.6, Developer Manual. The Legion Research Group,

Dept. Computer Science, U. Virginia, Charlottesville, xL4., 1999,

http://legion.virginia.edu.

C. Neury. 3-D Mesh Generation for Calculating Flow Through Radial-Axial
Turbines, Proc. International Conf. Numerical Grid Generation in Compu-

tational Fluid Dynamics, J. H/iuser, C. Taylor, Pineridge Press, Swansea,

UK, 1986.

13

5 Appendix: Verification values

The NGBs require that the correct solutions be computed. This is ensured by
demanding that verification values for solution and error norms of all nodes that

are directly connected to the Report node in the DFG are computed. In this

section we provide these values. Error tolerances and methods for computing
norms for NGB are the same as for NPB.

5.1 Embarrassingly Distributed

values for ED, class S, computed by each SP nodeVerification

node # solution norm

0.8676543011741d-04

0.6033493408310d-04

0.6278114032528d-04

0.6603179902638d-04

0.9122028866543d-04

0.8601620225691d-04

0.5988773196543d-04

0.6157026954073d-04

0.6457044508652d-04

0.8687428401194d-04

0.8528517607623d-04

0.5944509868286d-04

0.6043095623721d-04

0.6319041663855d-04
0.8273663135464d-04

0.8457166533017d-04

0.5900696189910d-04
0.5935880462626d-04

0.6188715115064d-04

0.7879773267341d-04

0.8387501686770d-04

0.5857325969939d-04

0.5834963218012d-04

0.6065629301996d-04

0.7504851869600d-04

0.8319460928597d-04

0.5814393866091d-04

0.5739946515836d-04

0.5949368685757d-04

0.7148042299123d-04

error norm

0.8719352691803d-07

0.5988808458188d-07

0.6270092156558d-07

0.6551568383242d-07
0.8553969317102d-07

0.8643202500288d-07
0.5943418706437d-07

0.6155109448566d-07

0.6413646078612d-07

0.8152493003792d-07

0.8568916795314d-07

0.5898555351009d-07

0.6046719704763d-07

0.6283245382631d-07

0.7770753603531d-07

0.8496424291102d-07

0.5854206620123d-07

0.5944517278358d-07
0.6159941928907d-07

0.7407863788365d-07

0.8425657226531d-07

0.5810362059449d-07

0.5848116700380d-07
0.6043330938920d-07

0.7062984804457d-07

0.8356551209019d-07

0.5767012327603d-07
0.5757152229935d-07

0.5933026612155d-07

0.6735324051262d-07

14

node # solution norm

0.8252985024299d-04

0.5771895249772d-04

0.5650453308785d-04

0.5839537229112d-04

0.6808535665169d-04

0.8188017551638d-04

0.5729826099434d-04

0.5566126383428d-04

0.5735757816226d-04

0.6485568447004d-04

0.8124504686581d-04

0.5688182884348d-04

0.5486627790428d-04

0.5637671694675d-04
0.6178420280687d-04

error norm

0.8289044920091d-07

0.5724149042257d-07

0.5671277285472d-07

0.5828661632209d-07

0.6424132668705d-07

0.8223080020494d-07

0.5681764661514d-07

0.5590163933420d-07

0.5729886620119d-07

0.6128703228573d-07

0.8158600910848d-07

0.5639852350520d-07

0.5513502305850d-07

0.5636369592773d-07

0.5848367565086d-07

node #

0

Verification values for ED, class W

solution norm

0.1745133059397d-04

0.1194347497651d-04

0.1271275032480d-04

0.1150480909799d-04

0.1305114022206d-04

0.1745560352290d-04

0.1193739401471d-04

0.1269942115908d-04

0.1149066787325d-04

0.1301167555462d-04

0.1745986923555d-04

0.1193141412701d-04

0.1268621099471d-04

0.1147665934807d-04

0.1297237680057d-04

0.1746412767819d-04

0.1192553395452d-04

0.1267311889347d-04

0.1146278217756d-04

0.1293324425385d-04

0.1746837879467d-04

0.1191975215752d-04
0.1266014391456d-04

0.1144903502624d-04

0.1289427815335d-04

errornorm

0.6955341579879d-06
0.4732433767510d-06

0.5071720177863d-06

0.4600674574080d-06

0.5381322068507d-06

0.6957392189784d-06

0.4730069614536d-06

0.5066479195335d-06

0.4595086246319d-06

0.5365356761184d-06

0.6959438483249d-06

0.4727745781123d-06

0.5061284384576d-06
0.4589549875939d-06

0.5349455062024d-06

0.6961480441358d-06

0.4725461723920d-06

0.5056135396850d-06

0.4584064944105d-06

0.5333617144459d-06

0.6963518044347d-06

0.4723216907465d-06

0.5051031881884d-06

0.4578630935544d-06

0.5317843158727d-06

15

node # solution norm

0.1747262252970d-04

0.1191406741612d-04

0.1264728511460d-04

0.1143541657009d-04

0.1285547868348d-04

0.1747685882701d-04

0.1190847842890d-04

0.1263454154958d-04

0.1142192549392d-04

0.1281684597929d-04

0.1748108763020d-04

0.1190298391404d-04

0.1262191227311d-04

0.1140856049497d-04

0.1277838012802d-04

0.1748530888245d-04
0.1189758260757d-04

0.1260939633998d-04

0.1139532028062d-04

0.1274008117128d-04

error norm

0.6965551273059d-06

0.4721010804231d-06

0.5045973487811d-06

0.4573247339124d-06

0.5302133232448d-06

0.6967580108191d-06

0.4718842894206d-06

0.5040959861974d-06

0.4567913647034d-06

0.5286487472472d-06

0.6969604530568d-06

0.4716712665253d-06

0.5035990650298d-06

0.4562629356041d-06

0.5270905965546d-06

0.6971624520995d-06
0.4714619612488d-06

0.5031065498690d-06

0.4557393966743d-06

0.5255388779393d-06

node #

Verification values for ED, class A

solution norm

0.1662388872593d-03

0.1120336284839d-03

0.1155494269554d-03
0.1144591065562d-03

0.1164120101231d-03

0.1643876342654d-03

0.1107586934055d-03
0.1139204792057d-03

0.1126757070066d-03

0.1116344021422d-03

0.1625918474544d-03
0.1095197898803d-03

0.1123587585230d-03

0.1109676929314d-03

0.1071044513952d-03

0.1608490693651d-03

0.1083153581826d-03

0.1108604672866d-03

0.1093308651249d-03

0.1028086486843d-03

error norm

0.6779616046334d-06

0.4612029937003d-06

0.4944689998311d-06
0.4485901415827d-06

0.5246454435912d-06

0.6781623235228d-06

0.4609720478128d-06
0.4939569076487d-06

0.4480440569950d-06

0.5230883044555d-06

0.6783626225632d-06

0.4607450429708d-06

0.4934493367655d-06

0.4475030647124d-06

0.5215374339158d-06

0.6785624992312d-06

0.4605219257276d-06

0.4929462520671d-06

0.4469671125838d-06

0.5199928417464d-06

t6

node #

8

solution norm

0.1591569849646d-03

0.1071439334321d-03

0.1094220422343d-03

0.1077612746219d-03

0.9873431034114d-04

0.6789609756324d-06

0.4600871443050d-06

0.4919534004407d-06

0.4459101226618d-06

0.5169225240005d-06

0.1559163057636d-03

0.1048946693312d-03

0.1067116281816d-03

0.1048091731788d-03

0.9120310319412d-04

0.1543637155168d-03

0.1038143074591d-03

0.1054335631917d-03

0.1034198910287d-03
0.8772452336450d-04

0.1528538118743d-03

0.1027618953918d-03

0.1042031878741d-03

0.1020842773640d-03

0.8442389321125d-04

errornorm

0.6787619510589d-06

0.4603026434516d-06

0.4924476183695d-06

0.4464361489565d-06

0.5184545362024d-06

0.6789609756324d-06

0.4600871443050d-06

0.4919534004407d-06

0.4459101226618d-06

0.5169225240005d-06

0.6791595706091d-06

0.4598753772286d-06

0.4914635630149d-06

0.4453889830283d-06

0.5153968104229d-06

0.6793577337061d-06

0.4596672919413d-06

0.4909780708165d-06

0.4448726798508d-06
0.5138773993154d-06

0.6795554626864d-06

0.4594628389051d-06

0.4904968885790d-06

0.4443611634404d-06

0.5123642931624d-06

17

5.2

class

S

W

A

Helical Chain

VerificationvaluesforHC,computedbyfinalLUnode

solutionnorm
0.5218111814670d-03
0.3707865163709d-03
0,3800195018967d-03
0.3397401925927d-03
0.2759004448851d-03
0.2044902312107d-01
0.1588666348974d-01
0.1504465470195d-01
0.1309985413018d-01
0.8059897367087d-02
0.4568545705333d-01
0.3363154291261d-01
0.3229649387852d-01
0.2835838318897d-01
0.2033297513577d-01

errornorm

0.2089313120425d-04

0.1476501931249d-04

0.1525298768678d-04

0.1366601055353d-04

0.1177099812324d-04

0.1321514192265d-01

0.9789942432742d-02

0.8730718331532d-02
0.7382890378185d-02

0.2473115882853d-02

0.1826624824076d-02

0.1336130626708d-02

0.1297209081421d-02

0.1142645851712d-02

0.8878915256529d-03

surface integral

0.7840627336810d+01

0.1116573970136d÷02

0.1208035142313d+02

5.3 Visualization Pipeline

Verification values for VP, computed by final FT node

class Re (checksum) Im (checksum)
S -8.994899992758d+04 -3.251690423310d+04

W -4.655638928393d+06 -5.590164304487d+04

A -5.741701238090d+06 -3.237222308450d+04

5.4 Mixed Bag

Verification values for MB, computed

class col .index

W

A

by FT nodes in final graph layer

Re(checksum)
-8.977825791271d+04

-8.963654068307d+04
-8.935307569342d+04

-3.892598836945d+06

-3.529619667886d+06

-2.803661281496d+06

-5.371673190742d+06

-5.352454993544d+06

-5.314018425421d+06

Ira(checksum)
-3.245251953627d+04

-3.324636067181d+04

-3.313613239670d+04

-4.672989296527d+04

-4.606914807530d+04

-3.656395484244d+04

-3.047905369011d+04

-3.573635637856d+04

-3.554626087459d+04

iterations

18

